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Structural Dynamics of Thin-Film Al

& Mono-atomic simple fcc structure, a = 4.05 A
¢ Long MFP > 50 nm for 60 keV electrons

¢ Kinematical diffraction theory

|ldeal system for quantitative study of structural
dynamics with fs electron diffraction



Results of Previous Studies

Non-thermal melting (optical, ~ 500 fs)

C. Guo, et al., Phys. Rev. Lett. 84, 4493 (2000)

Strongly-driven thermal melting (diffraction, ~ 3.5

ps)
B. J. Siwick, et al., Science 302, 1382 (2003)

Neither study provide the detailed information
on the atomic motions during melting



Femtosecond Electron Diffraction Setup
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J. Cao, et al., Appl. Phys. Lett. 83, 1044 (2003)



Maintain Optimal Temporal and
Spatial Resolution

+ 300-fs electron pulse (<1600 e/pulse), small crossing angle
+ Low excitation fluence ~ 2 mJ/cm? , no sample damage

+ 1 KHz reprate and long data acquisition time for better SNR

0 < 10°
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Number of Electrons

+ Temporal resolution: ~400 fs

+ Spatial resolution: sub-milli-angstrom



Diffraction Pattern of 20-nm Al Film

2D diffraction pattern Intensity curve
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Convert 2-D diffraction data to 1-D intensity curve

Laser fluence ~ 2.3 mJ/cm? , 25 s integration,
~1500 e/pulse and time step ~ 530 fs



Structural Changes Probed with Diffraction

Unperturbed Expanded Inhomogenous Disordered
(or contracted) spacing

- . . .

Bragg Peak Shifted Broadened Weakened
K K K K

Three aspects of Bragg peak (position, intensity and
width) give detailed knowledge of structure change.

Reproduced from: A. Rousse, et al., Rev. Modern Phys., 73, 17(2001)



Temporal Evolution of Bragg Peaks
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¢ Coherent and in-phase motions
¢ Amplitude is proportional the laser fluence
¢ 8 ps period and damping time constant~ 20 ps



Laser-Induced Breathing Motion of
Lattice along Surface Normal

¥ (x,t) = A(t) cos(mx | L)-cos(zvt / L)

O0<x<Land T=2LN.

¢ Impulsive and displacive excitation < vibrational period
¢ the open boundary 1-D standing wave
¢ breathing motions along the surface normal
< Vibrational period:
given v=5000m/sand L =20 nm, T'=2L/v = 8 ps
In excellent agreement with FED data



Animation of Breathing Motion




Temporal Evolution of Lattice
Temperature

Debye-Waller factor: I(T)=I, exp[-a(h*+k*+1°)T]

¢ Lattice reaches equilibrium
T ~5ps

¢ Vibration nearly reach the
first maximum displacement

¢ [Two modes of atomic FLh
m0t|0n IaunChed 710 0 10 20 30 40 50 60 70
concurrently Time Delay (ps)




Atomic-Level View of Laser-Induced
Lattice Dynamics

Both coherent and thermal lattice motions
start simultaneously. A coherent lattice
vibration with a period of 8 ps starting
Immediately after the optical excitation with a
concurrent heating of the lattice, reaching its
final equilibrium temperature ~ 5 ps later.



TTM Overestimate the e-ph Coupling

Two temperature model (TTM) Electron, temperature

Electron: T,
Phonon: T,

Coupling constant: G -

0O 0.1 0.2 0.3 0.4 0.5

Lattice temperature

C.(T) % = KV'T, ~ G(T, ~ 1) + P(x.1)
oT,
C a—; =G(T,-T)
Lattice thermalization: ~300 fs 00 02 08 0 08

For ~ 5 ps lattice thermalization: G. Tas & H. J. Maris, Phys.
a G ~10 times smaller is needed  ReéV- B 49, 15046 (1994)



Previous Time-Resolved Electron
Diffraction Study

Strongly-driven thermal melting (superheating)

——T=-05ps (£ 0.25 ps)
T=+0.5ps
T=+15ps
T=+25ps
T=+435ps
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3.5 ps melting time at laser fluence 70 mJ/cm?
3.5 ps > 1.5 ps e-ph thermalization (~ 1500K)
predicted by TTM simulation

B. J. Siwick, et al., Science 302, 1382 (2003)



Extrapolated Lattice Temperature
at Fluence of 70 mJ/cm?
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At 1.5 ps, 7,~700 K < melting temp. 933K
Superheating highly unlikely



Proposed Melting Mechanism

The large coherent atomic motions
weaken the lattice structure significantly.
Under this condition, less atomic random
motions (lower temperature), less than that are
required in a normal thermal melting, led to the
loss of the lattice long-range order. This
Interplay of coherent and thermal atomic
motions melts the lattice within the first half
cycle of coherent vibration.

A. M. Lindenberg, et al. Phys. Rev. Lett. 84, 111 (2000)
K. Sokolowski-Tinten, et al. Nature 422, 287 (2003)



Coherent Control of Lattice Motions

SRR ops
g RS 4 ps
together

(D) ainyesadwa |

<
S
o
>
o
5]
ey
®)
9]
Qe
c
@
O
X
]
3]
o
)
=
=
<
]
o

AT
N 350

Time Delay (ps)

Using a seguence of pulses to control both phase and
amplitude of lattice motion



Summary

m FED capable of measuring ultrafast
structural dynamics on the fundamental
timescale of single atomic vibrational
period

- Time resolution ~ 400 fs
- Sub-milli-angstrom spatial resolution

m The structure dynamics of Al film
- Coherent and thermal motions

- Coherent control of atomic motions
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