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= Coherent short wavelength science - “laser-like” beams in EUV with
femto-to-atto time resolution

= Extend wavelength range and efficiency using “photonics”

= Applications
- Plasma dynamics studies
- Ultrafast, high frequency, photoacoustic response of materials

- Ultrafast photoemission spectroscopy to observe molecular motion on
surfaces



Extreme nonlinear opfics: high harmonics (HHG)
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= Coherent EUV light is generated by ionizing a gas with a fs laser
= Broad range of harmonics generated 4.5 up to 550 eV

= “Laser-like” coherent beams in EUVY
- R. Bartels et al, Science 297, 376 (2002), Nature 406, 164 (2000)
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X-rays are generated by atoms being ripped apart
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HHG emission in time and frequency:
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X-rays are generated by atoms being ripped apart
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No limit in theory to harmonic photon energy - BUT two practical limits until recently--
1) Phase matching; 2) No emission from ions
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Use phase matching (Ak=0)
for efficient EUV generation

If Ak # 0, adjust or restrict
emission from regions that are
out of phase

Coherence lengths for HHG
in the presence of high levels
of ionization are pum - mm



Phase-matched frequency conversion in waveguides:
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C. Durfee et al., Optics Letters 22, 1565 (1997)
A. Rundquist, et al, Science, vol. 280, pp. 1412-1415 (1998)
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= Waveguide creates plane-wave geometry
= Waveguide can control the phase velocity (v, = w/k)
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Pressure-tuned phase-matching of soft x-rays:
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= Phase-matched length in fiber: 1-3 cm
=  Output enhanced by 102-103
= >10'2 Photons/sec @ 50 eV



Problem: HHG generated during ionization:
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C. Durfee et al., Optics Letters 22, 1565 (1997)
A. Rundquist, et al, Science, vol. 280, pp. 1412-1415 (1998)
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Higher harmonics are generated at higher laser intensities and higher levels
of ionization => impossible to WG phase-match above =80eV or ionization >

5%




Quasi-Phase-Matching can adjust for phase mis-match:
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2mm A Periodicity of nonlinear

* Traditional Quasi-Phase-Matching, Ak = K, =
medium

Intensity

Length

Periodically poled
materials

Armstrong et al., PRA 127, 1918 (1962),; Fejer et
al.,JOE 28, 2631 (1992); Opt. Lett. 22,1834 (1997)



Quasi-Phase-Matching can adjust for phase mis-match:
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» Traditional Quasi-Phase-Matching, Ak = K = Zmm A= Periodicity of nonlinear
A medium

Length

Intensity

Periodically poled
materials

Armstrong et al., PRA 127, 1918 (1962),; Fejer et
al.,JOE 28, 2631 (1992); Opt. Lett. 22,1834 (1997)



Use “glass-blowing”
techniques to create
modulations of 1mm -
0.25mm periodicity

This modulates the laser
intensity, and in turn the
EUV amplitude and phase

Quasi Phase Matching of
HHG occurs automatically
by suppressing emission
from regions that are out of
phase

EUV Photonics: modulated fibers
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Shorter modulation periods give 100eV higher energy!
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Quasi phase matched HHG in a fully-ionized plasma
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= Can create partial phase matching even when fully ionized (m=5 QPM)

- E. Gibson et al., Science 302, 95 (2003)
= Possibility to increase flux by orders of magnitude

= Photon energies up to keV using only modest (10x) increase in intensity
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Can harmonic emission from ions extend photon energy?
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Quantum calculations
(Christov) show that the
HHG emission from Ar
ions is as bright as that
from atoms, and extends
to higher energies

However, observation of
HHG from ions difficult-
highest Ar harmonics

observed <100eV
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Waveguide counteracts plasma defocusing:
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= At intensities of > 1075 Wcem2, extend HHG to 250eV in Ar

- E. Gibson et al, PRL 92, 033001 (2004)
= HHG from ionization of Art -> Ar*t

= Represents extension of cutoff by 100 harmonics- 150eV!
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Why was it so difficult to observe HHG from ions?

Plasma-induced defocusing

N
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ionizing gas

For 7 Torr, 100% ionized gas, the
defocusing length is 2.8mm,
compared with confocal parameter of
= lcm

In a gas jet - limit to the intensity and
ionization before plasma breaks up

the pulse
* Wahlstrom PRA 51, 585 (1995)

Hollow waveguides guide the laser
even with a plasma and maintains
high intensity and good mode

Emission from ions allows extension of
harmonics to very high energies
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New mechanism for pulse self-compression

Noble Gas Noble Gas
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Pulse emerges from fiber significantly shorter in time (13fs) compared with input (29fs)
WITHOUT NEED FOR DISPERSIVE PULSE COMPRESSION




Theory of plasma-waveguide self compression
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= Theory shows that the temporal compression is due to a spatiotemporal reshaping effect
as the pulse refracts from the plasma and is guided in the waveguide.

= Effect much weaker in free-focus jet




Potential range of compact coherent x-ray sources
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Photon energy

* Photon energy scales linearly with the laser intensity
* 101 Wem2, should generate multi-keV harmonics from ions
* Need QPM techniques to enhance these harmonics

e Guided geometry will still work




EUY

Single-stage, cryo-cooled,
7W multi-kHz laser

R
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EUY
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EUYV beam EUY interference pattern

= Repeat 200 year old experiment - Young’s Double Slit
- Young, Philos. Trans. R. Soc. XCII 12, 387 (1802).
- E. Wolf et al.,, JOSA 46, 895 (1957; Opt. Lett. 6, 168 (1981).




Nearly perfect spatial coherence in the EUV EUY
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Double-slit diffraction patterns from Imm EUV beam
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m -
.= 0.861 Fiber length
= ]

ogQ L - A Libertun et al, Applied
2 3 4 5 6 7 8 9 10 11 Physics Letters, TBP (2004)
Hollow Waveguide Length (cm)

= “Laserlike” beams only for long interaction lengths in fibers
- Long lengths are needed to form a guided mode with a flat phase

= Spatial coherence much lower (= 50%) from gas jets
= Rich physics in guided beam propagation in plasmas




Simple EUV Gabor holography of stafic objects
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Experimental EUV beamline: EUWV
TN A
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Large working-distance magnification system
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HHG source Object Multi-layer Mirror
S —
Image
Multilayer Mirror at CCD

= 20x magnification
= Resolution =1 micron
= Image out-of-focus to show fringes

An NSF Engineering Research Center



Time-resolved stroboscopic imaging EUY
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Dynamic Imaging
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=  50x magnification
= 3 minute exposure @ 2 kHz

Static mesh Static droplet “Perturbed” droplet



Time-resolved dynamics imaged using HHG: =UY
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0 EUYV probe time delay 2ns



Scientific Possibilities
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= Detailed data on light coupling into high-density plasmas

= “Warm dense matter” studies

» Shocks

- Expansion into a background gas

= Underdense plasma beam propagation
- Vaporizing prepulse

= Colliding plasmas

- llluminate two drops

= Droplet source of interest for EUV lithography LPP sources

= Generation of keV harmonics to study thicker samples



Using fast EUV light pulses to observe surface reaction

Time-Resolved Photoemission

Electron

S

OF

detecy/-r

A

m

Infrared 50fs pump pulse XUV 10fs probe pulse

b

ol




NIST-CU

Peroxo oxygen has a
characteristic peak
in the valence band
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Time-resolved photoemission: 0, rotation on Pt =UY
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Pump Pulse energy: 1uJ/mm?2
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Hot electron mediated surface charge transfer process on 100-500fs timescales
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Electrons are heated rapidly and cool rapidly within 250fs
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At the Fermi edge
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Conclusions
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= Ulirafast EUV “Photonics” makes possible versatile new light sources -
- Laser-like beams at photon energies up to = keV
- Unprecedented time resolution, coherence, size

= Basic feasibility of stroboscopic imaging of small-scale plasmas
demonstrated

= Novel linear and nonlinear spectroscopies using EUV light
- Site-specific information about atoms and molecules
- Spectroscopy with simultaneously high spatial and temporal resolution
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